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Network algorithmics and the emergence of the cortical synaptic-weight distribution
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When a neuron fires and the resulting action potential travels down its axon toward other neurons’ dendrites,
the effect on each of those neurons is mediated by the strength of the synapse that separates it from the firing
neuron. This strength, in turn, is affected by the postsynaptic neuron’s response through a mechanism that is
thought to underlie important processes such as learning and memory. Although of difficult quantification,
cortical synaptic strengths have been found to obey a long-tailed unimodal distribution peaking near the lowest
values (approximately lognormal), thus confirming some of the predictive models built previously. Most of
these models are causally local, in the sense that they refer to the situation in which a number of neurons all
fire directly at the same postsynaptic neuron. Consequently, they necessarily embody assumptions regarding
the generation of action potentials by the presynaptic neurons that have little biological interpretability. We
introduce a network model of large groups of interconnected neurons and demonstrate, making none of the
assumptions that characterize the causally local models, that its long-term behavior gives rise to a distribution
of synaptic weights (the mathematical surrogates of synaptic strengths) with the same properties that were
experimentally observed. In our model, the action potentials that create a neuron’s input are, ultimately, the
product of network-wide causal chains relating what happens at a neuron to the firings of others. Our model is
then of a causally global nature and predicates the emergence of the synaptic-weight distribution on network
structure and function. As such, it has the potential to become instrumental also in the study of other emergent

cortical phenomena.
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I. INTRODUCTION

The strength of a synapse between a neuron’s axon and
another’s dendrite is generally understood to be some mea-
sure of how influential an action potential fired by the pr-
esynaptic neuron can be on the buildup of such a potential in
the postsynaptic neuron. While the physical entities whose
measurement can be said to relate to synaptic strengths are
various [1-4], recent experimental work involving measure-
ments of the excitatory postsynaptic potential amplitude has
revealed that synaptic strengths follow an approximately log-
normal distribution, i.e., a long-tailed distribution that is uni-
modal and peaks near the lowest voltage values [4].

Understanding the processes that give rise to a distribu-
tion with these properties can be greatly enhanced by the
construction of mathematical models that take into account
the nature of each neuron involved (excitatory or inhibitory),
the nature of a synapse’s plasticity in terms of how its
strength changes in response to inter-neuron signaling, and
also the distribution of firings in time. Predictive models
have been built with varying degrees of success [1,2,5,6],
using the so-called synaptic weights as mathematical repre-
sentations of synaptic strengths. The most successful of these
models draw on relatively well established knowledge re-
garding the proportion of inhibitory neurons to be used and
the rule to change synaptic weights [2,6].

Almost invariably, though, these models have relied on
examining one single postsynaptic neuron, toward which fir-
ing patterns are directed that in essence seek to summarize
the entire input history of the postsynaptic neuron by a
simple stochastic process. Arguably this history is one of the
most important elements in giving rise to the synaptic-weight
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distribution in a way that can be understood biologically [7],
but in most current models there is no choice but to summa-
rize it beyond retrieval. This happens because the models in
question are all strictly local, allowing for no causal depen-
dency between what happens at two neurons unless they are
no farther apart from each other than one single synapse.

The one study that to our knowledge has avoided this
pitfall is to be found in [6], where the authors consider a
network of interconnected neurons along with a Hebbian
mechanism for synaptic weights to change during the time-
stepped simulation of a set of differential equations relating
weights to firing rates. Nontrivial causal dependencies are
then taken into account at all times, but the model’s setup as
tightly coupled differential equations in time blurs every de-
tail of a firing’s causal predecessors, which for all purposes
remains irretrievable. The model we now introduce addresses
the severe shortcoming of the history-oblivious models men-
tioned above, combining a network structure and algorithm
with the proven mathematical elements of those models. In
doing so, it also expands on the modeling capabilities of [6]
by allowing the spatially remote causes of a neuron’s firing
to be fully exposed for detailed analysis.

Before proceeding, we note that the present work is part
of the now decade-long effort to study the emerging proper-
ties of the various networks appearing in several biological,
social, and technological domains. The reader is referred to
the chapters collected in [8—10] for a general view of the
main achievements. We find it surprising, though, that very
few of such works have addressed the important question of
how node functionality, together with network structure, af-
fects the flow of information among nodes and perhaps even
alters the global properties of interest. One example is the
simple algorithm described in [11], whose independent ap-
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plication at all nodes based only on local characteristics of
the network gives rise to structures, simpler than the network
taken as a whole, for efficient information dissemination.
This paper’s model is another example, but in a totally dif-
ferent context.

II. MODEL

The model has a structural component and an algorithmic
one. The structural component is a directed graph D whose
nodes correspond to neurons that can be either excitatory or
inhibitory. For i and j two distinct nodes such that at least
one of them is excitatory, an edge directed from i to j repre-
sents a synapse with associated nonnegative weight w;;. No
edge exists between two inhibitory nodes [12].

The algorithmic component turns each node in D into a
simple simulator of the corresponding neuron, employing
message passing on the edges along their directions to simu-
late the signaling through the corresponding synapses when
nodes fire. Collectively, the nodes behave as an asynchro-
nous distributed algorithm [13], here referred to as A, each
executing a simple procedure P whenever receiving a mes-
sage, possibly sending messages itself while executing P but
remaining idle at all other times. Because nodes only do any
processing in this reactive manner, at least one node is
needed that initially executes P once without any incoming
message to respond to and then starts behaving reactively
like the others. We call such a node an initiator.

At node Jj,letv; J stand for the node’s potential. Let also v°
and v', with v°<v', be a node’s rest potential and threshold
potential, respectively, the same for all nodes. The effect of
running P is for j to probabilistically decide whether to fire
and, if it does fire, to send messages on all outgoing edges
while setting v; to v, If P is run as the initial processing by
an initiator, then the firing occurs with probability 1 and P
involves no actions other than the ones just described. If not,
then let i be the sender of the triggering message. The firing
occurs with probability (v;—v")/(v'-v°) after v; has been
updated to either min{v',v;+w;}, if i is excitatory, or
max{v’,v; =W, if i is inhibitory (so initializing v; ; to some
value in the [v ,v'] interval ensures that it remains thus
bounded and that the decision probability is legitimate).
Then the weight w;; is considered for an update.

The updating of w;; seeks to mimic the commonly ac-
cepted generalization of the Hebbian rule embodied in the
spike-timing-dependent plasticity principles [1,14], accord-
ing to which the change incurred by a synapse’s weight de-
pends on the extent to which there is a causal dependency of
what happens at a neuron upon the other’s firing. As a gen-
eral rule, the synaptic weight is increased (potentiated) if the
postsynaptic neuron fires in response to the firing by the
presynaptic neuron, decreased (depressed) otherwise. In ei-
ther case the amount of change to the synaptic weight de-
pends on how close in time the relevant firings are, becoming
negligible with increasing separation.

Procedure P follows these principles by keeping track of
the latest firing by j so that a decision can be made on
whether to increase or decrease wy;. If j does fire in response
to the message received from i, then w;; is increased. If it
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does not but the previous message received from any source
did cause j to fire, then w;; is decreased. The weight w;
remains unchanged in all other cases. The actual amount of
change to w;; depends on whether it is to be increased or
decreased, and so does the nature of the change (by a fixed
amount or by proportion) [3,15,16]. An increase in wy; is
implemented by setting w;; to min{l,w;;+ &} with §>0, a
decrease by setting w;; to (1 a)w;; with O< a<1, thus en-
suring that synaptic welghts remain in the [0,1] interval if so
started.

Now assume that v'~v" is significantly greater than 1 and
that weights are indeed kept to the [0,1] interval. Given the
firing and weight-updating rules just described, at node j the
most likely scenario concerning the average weight of the
incoming edges is the following. Because any firing by j
causes v; to be reset to vY, the reception of the next message
1s unlikely to cause another firing, as v; gets set to at most
v°+1 and therefore the probability of the new firing is at
most 1/(v'-v"). If d, is the number of edges incoming to j,
then it follows that the corresponding average weight under-
goes an increase by 6/d; due to the first message, and the
result a decrease at the rate of a/d; due to the second mes-
sage (assuming the mean-field approximation in which the
weight of every edge incoming to j is now the same). Then
some number of weight-preserving messages may arrive, af-
ter which the same pattern of behavior gets repeated. For k
=1, using wX to denote the average weight after the kth
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for any value of d;. Thus, despite the aforementioned mean-
field approximation, and even though the distribution of syn-
aptic weights need not be the same as the distribution of the
average weights incoming to the nodes, a first approximation
is to expect the synaptic-weight distribution to peak some-
where near this interval. It also follows from Eq. (3), and
from the fact that synaptic weights are bounded from above
by 1, that we must have 6= a.

III. COMPUTATIONAL RESULTS

Running algorithm A starts with choosing one or more
initiators, each of which executes P and then starts behaving
like all other nodes. At any time it may happen that a node
has more than one input message to process, in which case
the order in which they are taken is the order of message
reception. Because this order is in principle arbitrary, A is
seen to acquire another degree of indeterminacy, in addition
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FIG. 1. Network topology. Restricted to two dimensions for
visual clarity, a D instance comprises nodes positioned randomly on
a radius-1 circle and edges, drawn as chords of the circle, that tend
to be more abundant over lower Euclidean distances. Excitatory
nodes are represented by filled circles, inhibitory nodes by empty
circles.

to that which is already present owing to the probabilistic
decisions.

We have conducted extensive computational experimenta-
tion with A on a graph D intended to model a simple cortex,
in line with significant recent work that draws on the theory
of graphs to help solve problems in neuroscience [17-25].
We regard D as a random graph but, unlike some of the early
work on cortical modeling by such graphs [12], where fully
random graphs [26] were used, we let D have a scale-free
structure [27], with parameter as suggested by some of the
more recent finds [28,29], though only loosely (since in these
works it is not neurons, but rather larger functional clusters,
that are investigated for their connectivity patterns). Thus, a
randomly chosen node i in D has k outgoing edges with
probability proportional to k=!8, Moreover, inspired by re-
cent work on the modeling of cortical systems [30,31], we let
each outgoing edge of i lead to another randomly chosen
node j with probability proportional to ¢4, where d,; is the
Euclidean distance between i and j when the nodes of D are
placed uniformly at random on a radius-1 sphere (Fig. 1),
provided i and j are not both inhibitory.

All computational experiments have adhered to the meth-
ods described next, which refer to sequences of runs of al-
gorithm A, each sequence comprising 10 000 runs. The first
run in a sequence operates on initial node potentials and
synaptic weights chosen randomly from the intervals [v°,v']
and [0,1], respectively, with v°=-15 and v'=0. Each subse-
quent run operates on the potentials and weights left by the
previous run. For n the number of nodes in D, a new set of
0.05n initiators is chosen randomly at the beginning of each
run. A run of A is implemented as a sequential program that
selects the next node to be processed randomly (first out of
the group of initiators for their first executions of P, then out
of those nodes that have at least one message to be received).
A new run in a sequence is only started after the previous one
has died out (no more messages to be processed remain),
which is guaranteed to happen eventually with probability 1.
Unless otherwise noted, the remaining parameters used by
procedure P are 6=0.01 and «=0.05.

It is important to realize that our sequential implementa-
tion of distributed algorithm A does in no way interfere with

PHYSICAL REVIEW E 81, 021916 (2010)

the massively parallel character that is inherent to A. In order
to see this, notice that, even if a massively parallel imple-
mentation were possible (one processor per node), the con-
current handling of messages arriving at distinct nodes
would still be restricted to causally disconnected messages,
i.e., messages having nothing to do with one another (not
even remotely). The relative order in which any such mes-
sages were handled would then be immaterial and could,
therefore, be any order. All our sequential implementation
does is to adopt a random order. In a similar vein, an alter-
native to requiring a run to die out completely before a new
one is started is to do one single, longer run in which nodes
with no message to be received are probabilistically given a
chance to act as initiators every so often. While this alterna-
tive may seem biologically more plausible, we have found it
to be essentially equivalent to the many-run approach out-
lined above. The latter, in turn, has had our preference be-
cause it allows for better termination control through how
many runs constitute a sequence and how many initiators a
run has.

All our results are averages over 50 000 independent se-
quences, of which each 500 sequences correspond to a new
D instance (so there are 100 D instances overall). A D in-
stance is constructed by first placing all nodes uniformly at
random on a radius-1 sphere, then selecting the number of
outgoing edges for each node. For k>0, a node receives k
outgoing edges with probability k‘l'g/EZTzll(k’)‘l'g. Nodes
are then chosen to be excitatory or inhibitory randomly, pro-
vided a certain proportion is respected, and the destination of
each edge is decided. An outgoing edge of node i is set to
lead to node j# i with probability e™2%i/3;,e~2%/". In the
latter, the i, pair must comprise at least one excitatory node,
and so must each of the i,;j" pairs. The graph that is actually
used in the run sequences is the giant strongly connected
component (GSCC) of D, that is, the largest subgraph of D in
which a directed path exists from any node to any other (and
therefore so do directed cycles going through any two nodes)
[32]. For the connectivity distribution and construction
method in use this component comprises about 0.951n nodes
on average.

Our results, here given for n=1000 and the well accepted
proportion of 0.2n inhibitory nodes [12,33], show that the
synaptic-weight distribution becomes analogous to the distri-
bution unveiled by experimentation along the sequences of
runs of algorithm A described above (Fig. 2). The process is
gradual, leading the weights to become relatively concen-
trated around a single low-value mode while still allowing
some residual probability to remain at the higher values. We
note that, as predicted by the approximation suggested by
Eq. (3) by virtue of the v° and v' values in use, the synaptic-
weight distribution does reach its maximum in the vicinity of
the [0.19,0.2] interval.

The long-term distribution is seen to stabilize even as the
weights continue to evolve, thus suggesting the existence of
an underlying weight dynamics whose effect on the overall
distribution is nevertheless practically imperceptible. The ex-
istence of this persistent dynamics is revealed by the causal
history of each terminal message reception (one that does not
lead to the firing of the receiver), which can be significantly
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FIG. 2. The synaptic-weight distribution, shown after selected
runs of algorithm A. Probabilities are binned to a fixed width of
0.01.

deep with respect to the relatively short average path of a
scale-free network [34] [Fig. 3(a)]. Except for the initial
sending of messages by initiators, the sending of every mes-
sage causes a synaptic weight to be increased, unless it al-
ready equals 1. But weight-1 synapses are very rare, espe-
cially when arranged as a path in D, so the causal histories
we have discovered do indeed hint at the existence of a dy-
namics of weight evolution in which weights both increase
and decrease in complex patterns. Additional confirmation is
provided by the average weight of the synapses involved in
the causal histories of terminal message receptions, which is
consistently less than 1 and also decreases throughout the
runs as the synaptic-weight distribution settles [Fig. 3(b)].
For the same values of v° and v!, we have observed con-
vergence to an approximate lognormal distribution to occur
also for other values of 6 and «. Two of these final distribu-
tions are shown in Fig. 4 alongside the final distribution of
Fig. 2. The two new distributions are for 6=0.015 with «
=0.05 and 6=0.01 with @=0.025. Equation (3) predicts their
peaks to be near the intervals [0.285,0.3] and [0.39,0.4], re-
spectively, and this is seen to be true. It is also apparent from
Fig. 4 that increasing the 6/ « ratio seems to disrupt the ap-
proximate lognormal character of the final distribution. We
had expected this to happen as the distribution’s mode
moved ever closer to 1 in the process of increasing 6/ «, due
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FIG. 3. Causal depth of a message reception and associated
synaptic weights. The causal depth of a message reception is the
size of its causal history, i.e., the number of firings that precede it
along the chain of firings that begins at some initiator when it fires
for the first time, each preceding the next by direct causation: given
any two subsequent firings in this chain, the first entails the sending
of a message whose reception triggers the second. (a) Maximum
and average causal depth of terminal message receptions during the
course of each run. (b) Average weight (before updates) of the syn-
apses involved in the causal histories of terminal message
receptions.
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FIG. 5. Final synaptic-weight densities for 6=0.0002 and «
=0.04. Densities are obtained by first binning probabilities to a
fixed width of 0.01 and then dividing the resulting probabilities by
the bin’s width. For w >0 representing a synaptic weight, the solid
line gives the lognormal density function f(w)=0.438 exp[—(In w
+2.997)2/(2x 0.9111%)]/w, which corresponds to the one that in
[4] fits experimental data, given by g(w)=0.426 exp[—(In w
+0.702)%/(2 % 0.9355%)]/w, after weights are rescaled by a constant
factor from the [0,10] interval used in [4] down to the [0,1] interval
we use. Thus, the two functions are such that f(w)=10g(10w).

mainly to probability accumulation at the far end since
weights are truncated at 1. What we see instead is that al-
ready for 6=0.01 with a=0.025 the distribution starts to de-
viate from having a lognormal appearance.

We have also found that varying the value of & more
widely so that the 6/« ratio is made to move substantially
closer to 0 can be quite revealing. Specifically, for &
=0.0002 and @=0.04, the synaptic-weight distribution stabi-
lizes in such a way that the corresponding density function is
in excellent agreement, after synaptic weights have been ap-
propriately rescaled, with the lognormal density function that
in [4] is shown to provide the best fit to experimental data.
This agreement is shown in Fig. 5, where the peak occurs at
about 0.02, thus also indicating that for this combination of &
and « values, the prediction of Eq. (3), according to which
the peak is to occur very near 0.005, breaks down.

IV. DISCUSSION

In D, the distributions of a node’s out-degree (how many
outgoing edges it has) and in-degree (how many incoming
edges it has) inside the GSCC are as shown in Fig. 6. The
expected out- or in-degree is 6.7. Except for the finite-size
effects in the out-degree distribution near the highest de-
grees, the agreement with the power-law distribution of ex-
ponent —1.8 used to create the D instances is very good.
Although this is known not to happen in general due to the
conditioning on a node’s being part of the GSCC [35], in the
present case it can be attributed to the fact that, as remarked
earlier, the GSCC is expected to encompass a sizable portion
of D (roughly 95% of its nodes). As for the in-degree distri-
bution, the one shown in Fig. 6 corresponds to the use of

FIG. 6. Out- and in-degree distributions within the GSCC. Data
are averages over 1000 graphs with n=1000. The solid line gives
the power-law distribution of exponent —1.8.
e~24ij in the probabilistic decisions to deploy edges once the
nodes’ out-degrees have been selected.

In a more general formulation, these decisions occur with
probabilities proportional to e i for some N<<O and the
choice of which value of N\ to use depends on whether one
wishes D, on average, to fall below or above the phase tran-
sition that gives rise to the graph’s GSCC. For the same
power-law distribution of out-degrees we have been using,
this phase transition is shown in Fig. 7, where the expected
size of the GSCC is given for varying \. The transition can
be said to start to occur at about A=-25 and to be consoli-
dated roughly past A=-5. The choice of A\=-2 we have used
throughout is then to be understood as reflecting the need for
most of the n nodes to be expected to lie within the GSCC.

Aside from the graph-related parameter A and the o/«
ratio, whose variation we investigated in the previous sec-
tion, our results have also relied on the 5% fraction of initia-
tors and on the v'~v"=15 difference between the threshold
and rest potentials. Increasing the former and decreasing the
latter have the common effect of increasing the number of
causally disconnected messages, in the sense discussed ear-
lier, to be processed during each run. As a result, more
weight alterations occur in a run and convergence to the final
distribution occurs in fewer runs. The distribution itself,
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FIG. 7. Expected number of nodes in the GSCC for different
values of the constant factor A. Data are averages over 1000 graphs
with n=1000.
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however, remains unaltered, so both the initiator fraction and
the v'—v? difference are to be regarded merely as influencing
how the run sequences progress in time. Of course, this has
nothing to do with how long it takes to execute a run se-
quence to completion, since despite requiring fewer runs for
stabilization each run requires more messages to be pro-
cessed.

V. CONCLUDING REMARKS

Every run in every sequence involves a new group of
initiators and as such provides new possibilities regarding
the branching of causal histories and how they affect firings
and weight changes throughout the network. Monitoring the
traffic of messages as they traverse edges and reach nodes is
then a means to do some quantification of how the cascading
runs, with their intermingling causal trees rooted at many
different initiators, cooperate in promoting the emergence of
the synaptic-weight distribution.

We have found that the long-term distributions of how
many runs traverse an edge or reach a node (see Fig. 8,
which corresponds to the same run sequences as Figs. 2 and
3), allowing as they do for relatively high numbers with sig-
nificant probabilities, suggest that some sort of information
integration is taking place among portions of the network as
the runs unfold. Perhaps such integration occurs in a sense
similar to that which has been theorized recently regarding
the emergence of higher functions such as consciousness
[36]. If so, then network algorithmics such as we have dis-
cussed may come to provide a powerful framework to test
the assumptions and eventual predictions of such theories.

We also remark that, although cerebral cortices do exhibit
some structural properties that are typical of scale-free net-
works [37,38], such as the so-called small-world properties
[39] and also the presence of hubs (nodes with very many
outgoing edges), it is still uncertain whether a network de-
scription based on a scale-free distribution of a node’s out-
degree is appropriate. This is so despite the many other
scale-free aspects of the cortex [40], especially if we con-
sider that there do exist growth models that give rise to other
types of out-degree distribution [37]. These models, how-
ever, are themselves not fully justified biologically, so it
seems to us that the question has so far remained open. The
difficulty in resolving it seems to be, essentially, related to
the technologies available for measurement, which as far as
we know have revealed the absence of a scale-free distribu-
tion of out-degrees only for very small groups of neurons
[38]. So our decision to perform computations on networks
having just this type of out-degree distribution is to be re-
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FIG. 8. Final distributions of the number of runs in which an
edge is traversed or a node is reached. An edge is said to be tra-
versed in a run when at least one message is sent along it during the
course of that run. A node is said to be reached in a run when it
receives at least one message during the course of that run. Prob-
abilities are binned to a fixed width of 50 for edges, 100 for nodes.

garded as settling for the best granularity at which meaning-
ful measurements can currently be performed, such as those
of [28,29].

One distinctive characteristic of our model has been the
explicit incorporation of an algorithmic component to ac-
count for both the local processing that takes place at the
nodes and the passing of messages among them. This imme-
diately sets our approach apart from any form of “analog”
modeling of the physical quantities involved in inter-neuron
signaling, thus perhaps raising questions regarding biological
plausibility. Our stance on this issue is in many senses akin
to that of researchers in the field of artificial life, whose “life
as it could be” motto refers precisely to the substitutability of
physical substrates by pieces of code, provided function re-
mains preserved [41]. This is what we have demonstrated our
approach to be able to achieve.
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